

Development of Mechanical Connector Technologies

Andrew Woodward Market Manager - Subsea Products Connector Subsea Solutions

What I will cover

- Introduction to CSS
- What is a mechanical connector
- The challenge of Clad & Lined Pipe connections
- The JIP and Type Approval Process
- The CLiP Connector
- Summary

Connector Subsea Solutions

Reliable Solutions for Complex Challenges

Who are we

- Founded in year 2000
- HQ in Norway, branch offices in UK, Croatia, Bosnia, Brazil
- 60+ Employees dedicated towards pipeline repair solutions

Complete Subsea Repair Solutions

- MORGRIP Pipeline Repair Connectors & Clamps
- Connector & Clamp Installation Frames & Tooling
- Pipe Lifting & Handling, Coating Removal, Pipe Cutting, Pipe-Prep, etc
- Lightweight, Robust, ROV friendly, Unique
- ISOTEK remote welding technolgies

Mechanical Connectors

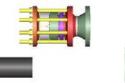
A definition:

A Mechanical Pipeline Connector provides a safe, reliable, reversible means of affecting a mechanical connection between two bare pipe ends equivalent to a good welded connection. A Connector should:

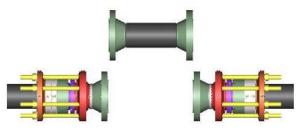
- Provide containment to suit line media, application pressure & temperatures
- Have sufficient gripping capacity to suit pressures and external loads

Wherever a pipe end needs to be cut to effect a new connection, typical uses:

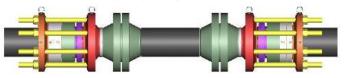
- Emergency and planned repairs, piping modifications
- Tie ins and bypasses for decommissioning & Life of Field Extension



How it works



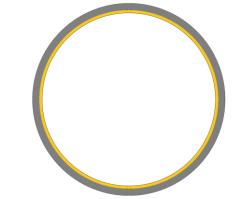
Typical Flange Adaptor Installation



Connectors deployed and stabbed onto pipeline(s), connectors activated.

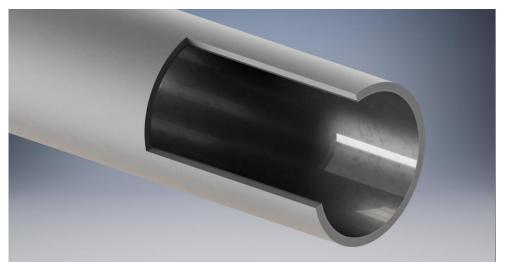
Spool piece positioned

Spool piece connected to Morgrip


Clad & Lined Pipe – The Challenge

The challenge set by Chevron & Woodside

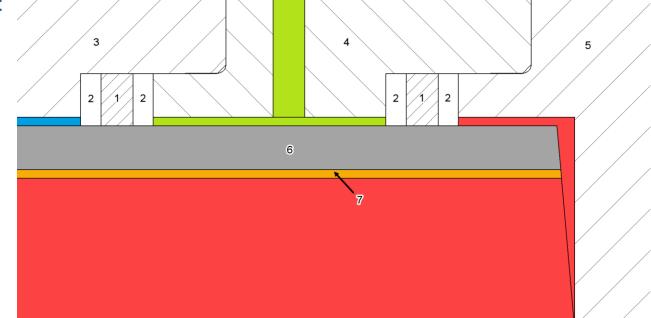
Clad & Lined Pipes are made of a parent pipe and an internal CRA barrier


- Used for pipelines containing aggressive line media High H_2S content
- Cutting the pipe exposes the new pipe end to line media
- Parent metal and pipe to CRA interface is susceptible to corrosion

Welding repair options need:

- Hyperbaric chambers & divers/remote systems
- Complex weld qualifications with dissimilar metals
- Limited availability of equipment and competence
- A change from conventional weld repair methodology

Clad & Lined Pipe – The Challenge



Conventional repair connectors seal on outside of pipe only.

Typical conventional connector seal arrangement:

Any solution should:

- Be suitable for pigging operations
- Protect the exposed pipe end from line media
- Be resistant to line media for life of asset

1. Graphite Seals4. Twin Seal Housing7. CRA Layer2. Anti Extrusion Rings5. Transition Flange3. Seal Housing6. Parent Pipe

Technology Qualification Process

Phase number	Description	How	What
1	Qualification basis - requirements	 Outlines problem, sets parameters and outlines solution 	 Clad pipe, Size & pressure range Concept(s)
	Technology Assessment	 Identifying what's new and novel 	Main connector design provenNew seal module is Novel
2	Threat Assessment	 FMEA of new/novel Iterative process updated for changes as project progresses 	 Identify threats Use likelihood & probability to quantify risks
	Qualification Plan	 Detail plan to address high risk threats Redefine parameters around risks 	 Identify models, testing etc that needs to be done Update as required

Technology Qualification Process

Phase number	Description	How	What
3	Execution of Plan	 Production Unit design & manufacture 	 Computational Models Small scale/component testing Review Full scale testing against predictions
	Performance Assessment	 Report based on project findings 	 Quantify risk reduction & residual risks
Launch	NPD Launch Documentation	Internal process	CSS Technical and commercial documentation, training etc

- DNVGL-RP-A203 process for development of new CLiP Connector Seal
- Regular technical review carried out internally, with JIP partners and DNVGL

- DNVGL-RP-A203 is an established framework for new product development with a focus on developing robust solutions
- DNVGL Type Approval* is a recognized process for approval of design of pipeline repair products
- Ability to minimise "double testing" where relevant validation is present in existing DNVGL Type Approval*
- Design, Materials of Construction, FMEA, scale testing and full product testing combine to validate solutions
- Involves testing of products beyond their specified capabilities to prove high level of integrity (not just 1.5 times design pressure!)
- Requires a methodology for assessing full range of variables each application
- * DNVGL Type Approval to DNVGL-ST-F101 and DNVGL-RP-F113

Scope of Technology Assessment

- Main connector based on DNVGL Type Approved gripping and sealing technology via burst test, external load test, fatigue test etc
- Focus of JIP was to validate the NEW end seal module

Test equip capacity								
	Coupling Size	Pressure Class	Max. Test pressure	Ratio of:				
Pipe Failure	Size	Class	(bar)	Max. test pressure Max. working pressure				
	1"	900 lb	2033	13.1				
	3"	900 lb	1389	9.0				
	"6"	900 lb	1412	9.1				
	12"	900 lb	833	5.4				

Technology Qualification Process

- Identification of key material Alloy 625 with additional heat treatment controls
- Computer modelling of material behavior
- Small scale testing of seal module & validation of model
- Excellent performance of seal module at internal weld seam observed
- Corrosion testing of modified Alloy 625
- Full scale External Seal Test & Internal Hydrotest
- Internal Capacity Strength Test (over pressure)
- Compressive Strength Test
- Reporting for performance assessment closed out

DNVGL Type Approval Awarded

For standard MORGRIP $\frac{1}{2}$ " to 42", 640bar(g), -40°C to 250°C for carbon, stainless & duplex steels pipes

For MORGRIP CLiP – defined by JIP partners

- Maximum design temperature of 149 °C ٠
- Maximum working pressure of 364 bar(g) ٠
- Size range 10" to 26"

TYPE APPROVAL CERTIFICATE

Certificate No: TAP000009L Revision No: 2

DNV.GL

This is to certify:

That the Pipeline Repair Connector

with type designation(s) MORGRIP® 150, 1000, 2000, 3000, 3000R, 3000Ri Series and CliP-MC; Including Couplings, Pipe Adapters, Flange Adapters and End cap.

Issued to Connector Subsea Solutions UK Ltd Wednesbury, West Midlands, United Kingdom

is found to comply with DNV GL standard DNVGL-ST-F101 - Submarine pipeline systems DNV GL recommended practice DNVGL-RP-F113 - Pipeline subsea repair API Specification 6FB - Fire Test for End Connectors 1998, with modifications

Application :

Material: Carbon, Stainless and Duplex Stainless Steels Temperature range: -40 °C to 250 °C Maximum working pressure: Up to and including ANSI/ASME Class 2500 Size range: 1/2" to 42" MORGRIP® CLiP-MC connector type is limited to: Maximum design temperature of 149 °C Maximum working pressure of 364 bar.g. Size range 10" to 26' Further limitations and conditions are detailed in this certificate.

Issued at Høvik on 2020-02-12 This Certificate is valid until 2024-09-03. DNV GL local station: Manchester

for DNV GL

Approval Engineer: Jonathan Wigger

Anne Britt Høyda Head of Section

This Certificate is subject to terms and conditions overleaf. Any significant change in design or construction may render this Certificate invalid. The validity date relates to the Type Approval Certificate and not to the approval of equipment/systems installed

Revision: 2016-12 www.dnvgl.com Page 1 of 4 © DNV GL 2014, DNV GL and the Horizon Graphic are trademarks of DNV GL AS.

- JIP partners help define problem, provide funding and valuable engineering input, but can limit scope (to their area of interest)
- JIP process can take time with gaps between phases this was a 2 phase JIP
- 3rd Party Type Approval to suitable standards are an excellent means of providing assurance for a new product always be willing to question if unsure, a good supplier will welcome this
- DNVGL-RP-A203 provides a solid framework around which to develop a product for market
- Lessons learnt: Process was longer and more complex than first expected but ultimately delivered a robust solution

What comes next... you tell us, give us your challenges!

Thank you

Contact mail@connectorsubsea.com