Proposed Abandonment Plug #3 (500 t) Plug #2 (500 ft)

P&A or Plug and Wait, what are the options and how do you decide?

Gavin Bell, IE Limited

Caroline Roberts Haritonov, Astrimar

SPE Aberdeen
Well Abandonment 2021
10 – 14 May

Introduction

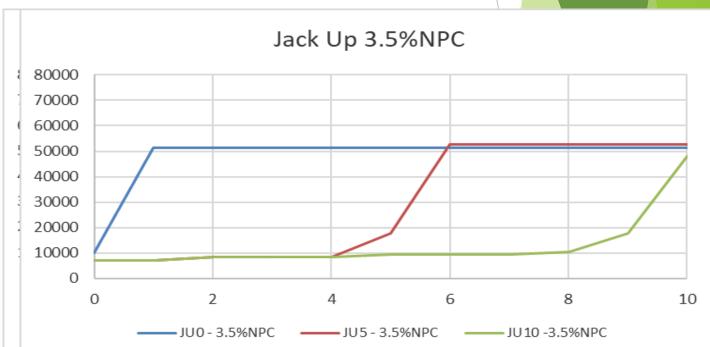
- Well Decommissioning on fixed platforms this has been my focus for a number of years.
- Assets where there may be a gap of several years between COP and P&A
- Many challenges to manage the end of life phase of an asset but when to P&A is a key issue
 - Abandon now or postpone until nearer topside removal?
- Logically doing it now might be better but there are arguments for delay
- We framed this presentation around the question 'How do you decide?' but maybe 'How do you decide this is acceptable?' is maybe a better summary.

- Why delay?
 - ► Finance availability
 - We're just not ready
 - Operational platform
 - Developing Technology
 - Campaign / Multi Operator Approach
 - Future Use

Economics

To illustrate the economic issues, consider an example North Sea asset:

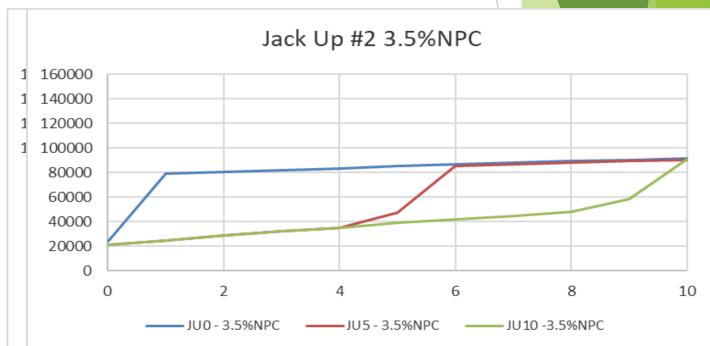
- North Sea Platform
- 12 wells Options for Rig Reactivation, Jack-Up MODU, Modular Rig
- Years 0 to 10. Costs for rig reactivation plus facilities upgrades to support well operations
- Well plugging year 1, well maintenance every 3rd year
- Facilities upgrade year before platform operations restart for platform based operations


- Rig Reactivation >£25 million
- Allowance for rig mods / interface for MR and JU
- Allowance for facilities upgrade to support platform based operations
- Well plugging ~£600k per well with maintenance work ~£1.2million every 3rd year
- P&A varies for each option range
 - ► RR 240 days, £115k/day
 - ► MR 228 days, £145k/day
 - ▶ JU 204 days, £210k/day

Economics #1

- Ignoring platform operating costs first.
- ► Total Cost compared to NPC at 3.5% or 8% discount Rate.
- Based on UK Govt. Dept of Finance Net Present Cost Calculator
- Delaying P&A pushes Total Cost UP
 - Additional cost of plugging plus interventions during idle phase
- Considering NPC delaying an expense shows an advantage
 - ► Total Cost for RR = £52.600 million
 - ► Cost of Rig Reactivation Yr-0 and P&A Yr-1
 - ▶ NPC if delay 10 years = £37.485million
 - ▶ Plugging Yr-0
 - ▶ Rig Reactivation Yr-9, P&A Yr-10

Example #1	Cost	P&A now	Delay 5 years	Delay 10 years
Rig Reactivation	Total Cost	57600	67200	68400
	3.5%DR NPC	56667	57042	51820
Modular Rig	Total Cost	51060	60660	61660
	3.5%DR NPC	49942	51380	46734
Jack-up	Total Cost	52840	62440	63640
	3.5%DR NPC	51391	52601	47949



Economics #2

- Include Platform Operating Costs
 - > 3 levels
 - 1. Fully operational
 - 2. Reduced cost after plugging
 - 3. Minimum cost after P&A
- Operating Cost at £14 million pa for fully manned / operating asset
- Reduced Operating Cost at £3.5 million pa after plugging
- Minimum Operating cost at £1.75 million pa after P&A
- The benefit of the JU option becomes significant when considering platform operating costs
 - ► No facilities reinstatement costs and operating costs when completing later P&A

Example #1	Cost	P&A now	Delay 5 years	Delay 10 years
Rig Reactivation	Total Cost	101350	130200	138400
	3.5%DR NPC	97056	112304	110076
Modular Rig	Total Cost	94810	123660	131660
	3.5%DR NPC	90332	106642	104990
Jack-up	Total Cost	96590	104440	112640
	3.5%DR NPC	91781	90480	91057

All values £'000

Risk based approach

- Financial focus doesn't recognise the changing risks
- These risks have a huge potential impact on the financial decision

Reservoir Risks

Well Risks

Asset Risks

Financial Risks

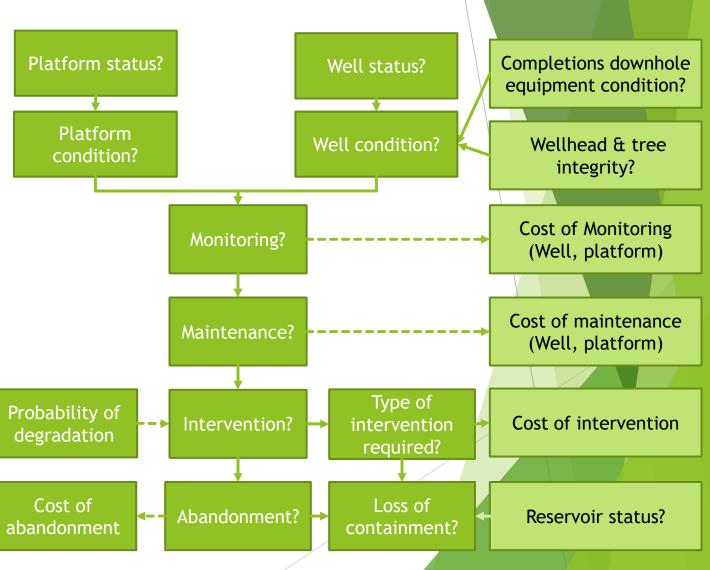
Identify options Agree risk acceptance criteria Identify & assess risks for each option Modify options to reduce risk Assess / confirm residual risk Estimate cost of options Select lowest cost-risk option Demonstrate ALARP* (if required)

Risk factors affecting decision

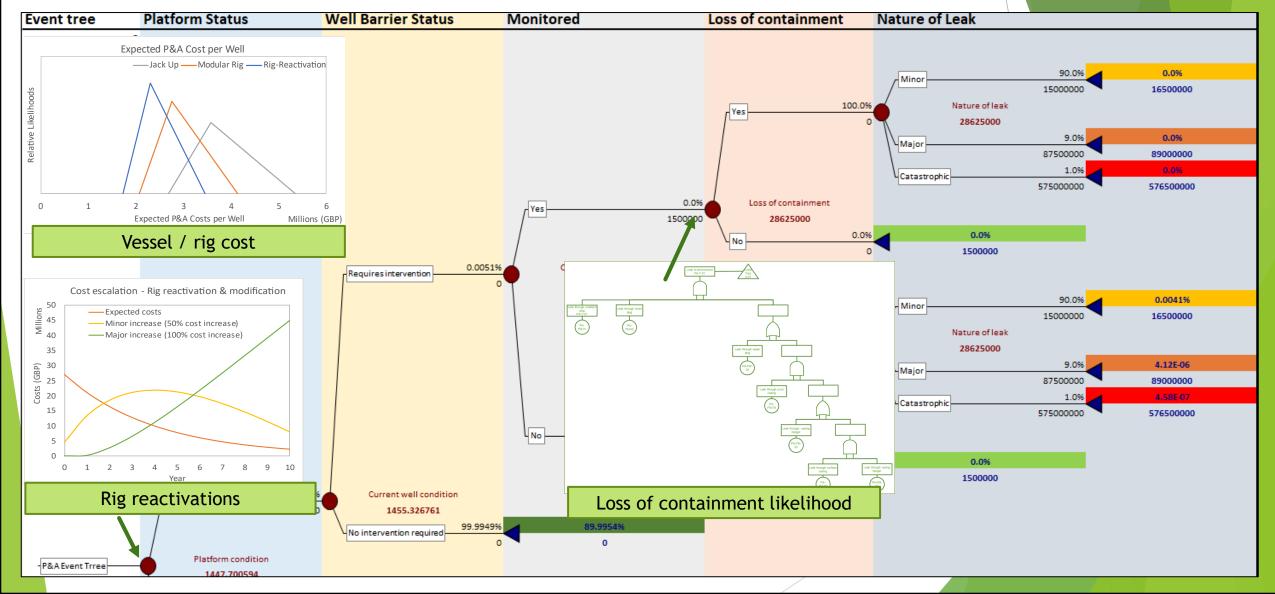
Reservoi Risks

- Reservoir status
- Reservoir repressurisation

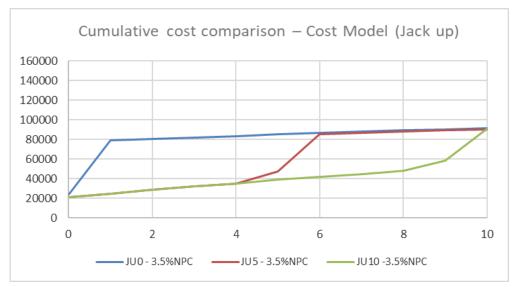
Well Risks


- Well status
- Well condition/ degradation
- Well maintenance/ intervention
- Loss of containment

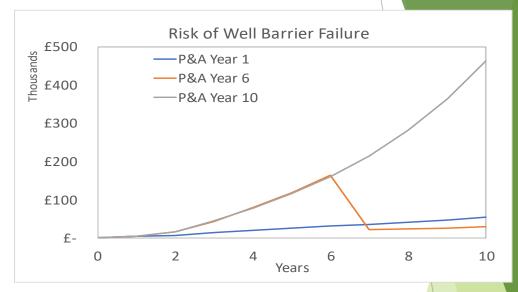
Asset Risks

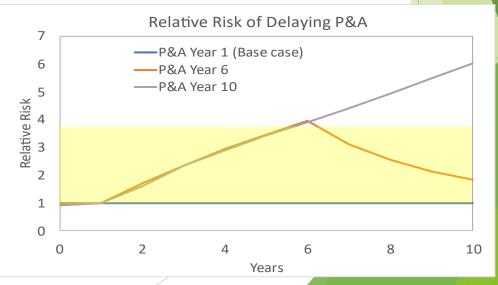

- Facilities status
- Facilities condition/degradation
- Facilities maintenance/ intervention

Financia| Risks

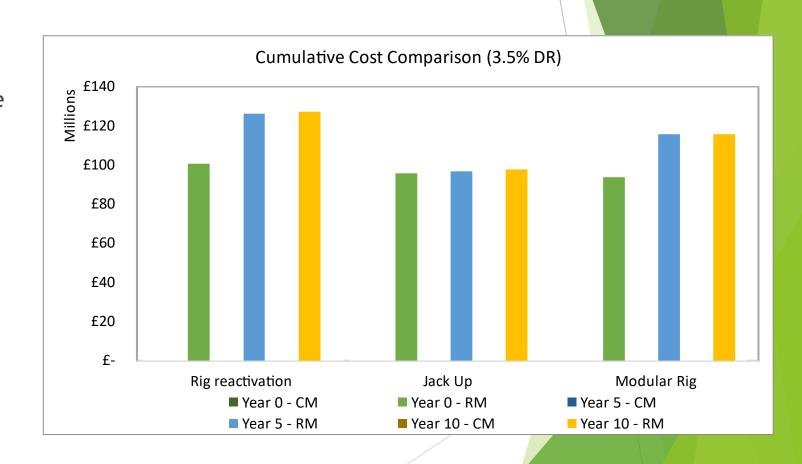

- Rig / manning cost
- Re-activation cost
- Monitoring cost
- Abandonment cost




Inputs to risk-based approach



Comparison of decision options



Summary of Risk based approach

- Cost model is more optimistic than the risk model
- Differences are greater where the risk of rig repair increases over time
- ▶ If delayed P&A is preferred, best option for this example would be to use Jack Up by Year 5
- Additional risks and uncertainties can be incorporated into the model
 - Reservoir recharge
 - Cross flow
 - Barrier verification

So What?

- Effective plugging
 - Depends on the well condition but this can be considered a viable option
 - Allow for intervention during plugged time frame - requires facilities to support operations
- Is it economic?
 - There is greater cost uncertainty with a delay.
 - Net Present Cost can help illustrate impact of delaying a significant expenditure.
 - A significant reduction in the cost of running the asset during a dormant period is essential. Minimum or zero manning is key.

- Assess the RISK
 - Needs a good understanding of the current condition of the asset and facilities that will be required to support intervention and later P&A is essential
 - Develop an event tree that considers key risks that may impact the asset and the cost model
 - There may be increased risk but this is a balance:
 - ▶ What is the company attitude to risk?
 - ▶ Is the increase in risk justifiable?

Conclusions

- Valid Business Reason and careful consideration of Risk and Economic Analysis can make this an appropriate option for offshore assets.
- Significant reductions in the asset operational cost (eg reduced or minimum manning) are essential to support a delay option.
- There is greater cost uncertainty in any delayed option.

- The increased risk profile is only supported by a reduction in cost.
- ► The risk appetite of an organisation is an important consideration.
- Better industry data to support this type of risk model is required.

Questions?

www.ielimited.co.uk

www.astrimar.com