Multisensor, Multi-Azimuth Quantitative Interpretation: A Case Study from the South Viking Graben, Norway

C. Reiser* and E. Mueller, PGS
& with a lot of background work by T. Bird & L. Goswami
Outline

- Introduction
 - Area of Interest
 - The Challenges
 - The Value Proposition

- Results Overview:
 - rockAVO in the area
 - Azimuthal seismic overview and results
 - QI / Brief prospectivity results

- Summary and Conclusions
Major Norwegian fields are located in this area over several stratigraphic intervals:

- **Balder, Grane, Svalin**
 - Eocene – Balder sands
 - Paleocene – Heimdal sands
- **Hanz field**
 - Upper Jurassic – Draupne
- **Johan Sverdrup**
 - Upper Jurassic intra-Draupne sandstone
- **Ivar Aasen**
 - Late Triassic to Mid. Jurassic
- **Edvarg Grieg**
 - Late Triassic to Early Cretaceous sandstone

- **Verdandi** discovery in 2003 and more recent discovery with **Lille Prinsen** in 2018:
 - various hydrocarbon intervals in
 - Eocene (Grid sand), Paleocene (Heimdal sand) and Permian (Zechstein Group).
Area of Interest | Viking Graben - The Challenges

Challenges:
- Shallow subsurface channels, shallow gas,
- Tertiary low velocity anomalies and high velocity sand injectites - V-brights
- Paleogene polygonal faults and
- High impedance rugose Late Cretaceous Chalk
Multi-Azimuth Multisensor Viking Graben | Acquisition Parameters 2019

- **Wide Tow Triple Source**
 - Source separation: 112.5
 - Total source separation: 225m

- **12 Streamer Spread with Tails**
 - 10 Streamers: 6,000m
 - 2 Streamers: 10,000m

- **Multi-Azimuth**
 - 1 legacy GeoStreamer
 - 2 additional GeoStreamer (2019)

- **Dense Spread**
 - Streamer separation: 85m

Addressing imaging challenges in the Viking Graben with multi-azimuth acquisition, longer offsets, and wide-tow sources. SEG International Exposition and 90th Annual Meeting
Sail line processing, line-by-line
Denoise, wavefield separation, deghosting/designature

Comprehensive 3D demultiple (SWIM & SRME)

Full Waveform Inversion using:
refraction up to 12Hz (0-10 km) +
reflection up to 15Hz (0-6 km)

4D/5D data regularization
All surveys/azimuths
Offset/azimuth binning and regularization

Kirchhoff PSDM
Offset/azimuth CDP gathers

Optimized azimuthal correction & weighted stack
RMO/gather flatness, denoise, MAZ stack, Az. stack

Revealing new opportunities with a cost-effective towed streamer MAZ solution in the South Viking Graben, Norway, First Break, 38, 95-101, DOI: 10.3997/1365-2397.fb2020085
Legacy | Multi-Azimuth Multisensor Regional Section (Relief section)

<table>
<thead>
<tr>
<th>Legacy</th>
<th>Multi-Azimuth Multisensor 2019</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Top Chalk

Better reflector continuity (sharper – cleaner) and improved signal to noise ratio
Top Balder - Fault Detection & Resolution Improvement

Top Balder Incoherency map showing polygonal faulting in the Lille Prinsen field vicinity. Enhanced discontinuity contrast and visibility with the Multi-Azimuth multisensor dataset.
rockAVO - 16/1-29ST2 (Lille Prinsen) – Clastic Section

More information about rockAVO can be found on: rockAVO | Well Data | Seismic | Offshore Oil and Gas Exploration | PGS or please contact rockAVO.info@pgs.com
Relative Acoustic Impedance
Co-rendered with full stack seismic
Attributes: Relative Acoustic Impedance

Arbitrary Line Lille Prinsen (Heimdal + Zechstein)

Lille Prinsen and Verdandi Oil & Gas Discoveries (Grid + Heimdal sst. Reservoirs)

Lille Prinsen look-alike prospects Zechstein and/or UR Jur. reservoirs

Arbitrary Line Lille Prinsen (Heimdal + Zechstein)
Elastic Attributes MAZ vs. Azimuthal

Significant Improvement between the NAZ legacy data to the Azimuthal Acquisition.

- Improved SNR
- Higher Resolution
- Accurate Fluid Identification and prediction
- Improved Leads – Prospects Identification and Derisking
Summary

- **Innovative acquisition** set-up with wide-towed sources (3) MAZ multisensor dataset has:
 - Overcome some complex geological & geophysical challenges
 - Lead to:
 - Very broadband wavelet beneficial for the inversion
 - Very good match at the wells
 - Multi-Azimuth Anisotropy analysis for extraction of Isotropic Gradient and subsequent Isotropic Vp/Vs (work on-going)

- **Mapping of existing fields** at numerous stratigraphic interval (Paleocene, UR Jur. & Permian)

- Highlighting some clear leads and opportunities
Thank you