

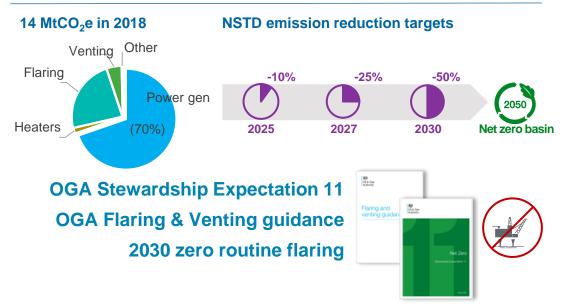
Oil & Gas Authority

Technologies for the Energy Transition

TopsidesUK 2021

Carlo Procaccini, OGA Head of Technology

30 November 2021


© OGA 2021

This presentation is for illustrative purposes only. The OGA makes no representations or warranties, express or implied, regarding the quality, completeness or accuracy of the information contained herein. All and any such responsibility and liability is expressly disclaimed. The OGA does not provide endorsements or investment recommendations. Oil and Gas Authority is a limited company registered in England and Wales with registered number 09666504 and VAT registered number 249433979. Our registered office is at 21 Bloomsbury Street, London, United Kingdom, WC1B 3HF

Roadmap to 'UK net zero'

O&G offshore emissions reduction

Carbon Capture and Storage

UK Government targets raised

- 2020's: 2 '*track-1*' clusters approved
- 2030: 4 CCS clusters, 20-30 Mtpa CO2
- 2035: ~ 50 Mtpa CO2

Offshore Windpower

OW Sector Deal (2019)

30 GW by 2030

Prime Minister 10-point plan (2020)

- 40 GW by 2030
- Of which 1GW floating

Scottish Government targets (2020)

- 11GW by 2030
- Of which 4GW expected floating
- Scotwind Leasing
- INTOG round

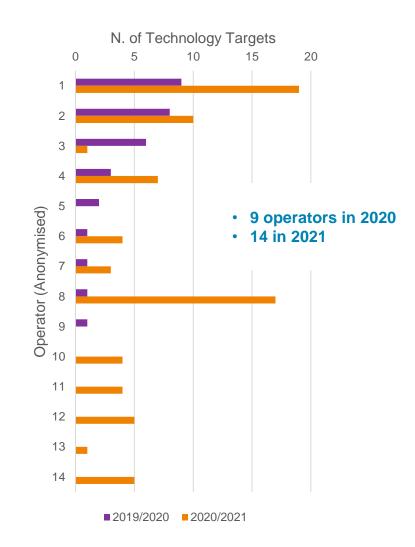
Low-carbon Hydrogen

UK Low-carbon H2 Strategy released (2021)

Blue- and Green-Hydrogen

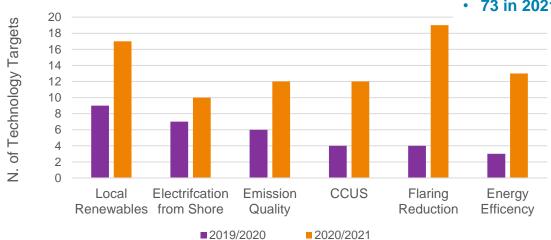
H2 production targets

- 2025 1 GW
- 2030 5 GW


- 2035 10-17 GW
- Equiv. to 7–10% of UK natural gas demand, or 20–30% of offshore windpower capacity exp. 2035

Role of Technology

Operators' technology plan survey 2020 vs 2021



Reported 'net zero technologies' by Operator

Reported 'net zero technologies' by Category

33 net zero technologies in 2020
73 in 2021

Near-term: F&V reduction and energy efficiency

Venting & Fugitive Emissions

Sources

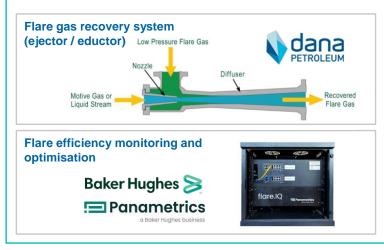
- Process design (vessel blanketing)
- Fugitive leakage
- Venting / purging for maintenance

Metering of vent flows is not routine

Improvements include...

- Installation-wide HC emission monitoring and atmospheric sampling
- Nitrogen replacing fuel gas for purging/blanketing - Shell SNS
- NII techniques to avoid vessel entry

Flaring


Issues

- Lack of export route for associated gas
- Passing valves releasing into flare systems
- Low combustion efficiency of flares (methane emissions)

Monitoring flare efficiency is not routine

Improvements include...

- Flare gas recovery systems
- Flash gas compressors, ejectors / eductors
- Monitor and optimise flare combustion efficiency

Energy efficiency

Issues

 Redundant power generation / compression capacity

Improvements include...

• Power ring mains

Power ring main to

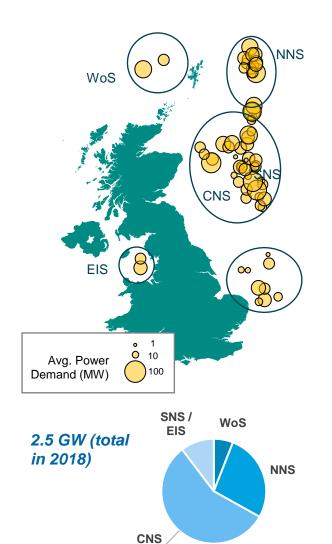
spinning reserve

- Power storage reducing spinning reserve
- Compressor and pump right sizing / rewheeling
- Optimised equipment controls

Power storage (batteries) as back-up source

Forties

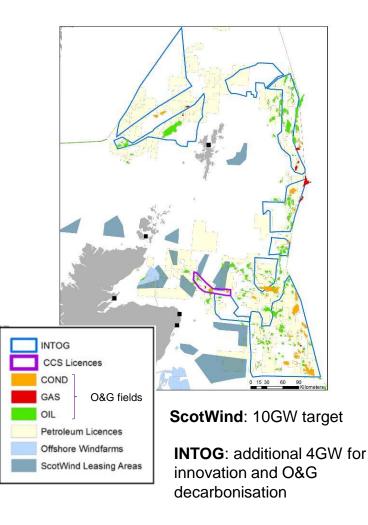
Aoache


ABB

10% (sustainable) emission reductions by 2025 achievable

Mid 2020s: electrification of O&G facilities

Oil & gas offshore power usage



Decarbonisation targets and electrification timeline

Synergies with Windpower

Sources: OGA

Technologies for electrification

Platform design & modifications

Green field – design for electrification

- Renewable power via cable (substations, risers, FPSO swivels / turrets)
- Local renewables / power storage for continuity (batteries; hydrogen/fuel cells; gas turbine/CCS)
- Renewable energy for process heating geothermal/well heat recovery/sea source

Brown field - equipment retrofitting

- Footprint & weight subsea vs topsides
- Integration with existing systems
- 50 vs 60 Hz frequency conversion
- Shutdown impact
- NZTC competition on cost-effective brownfield modifications

Offshore transmission/distribution

Transmission cables HVAC vs HVDC

- Longer distance (~>150km) AC now possible
- Technology gaps: DC dynamic cables and swivels

Transmission equipment

- Voltage step up/down, converters, regulators
- Potential for subsea transformers, distribution and switch gear

Transmission installations and power hubs

- Fixed vs floating
- Integrated power hubs (built in continuity vs power from shore)

O Hitachi Energy

Subsea transformer

Floating Wind Power

Floating structures

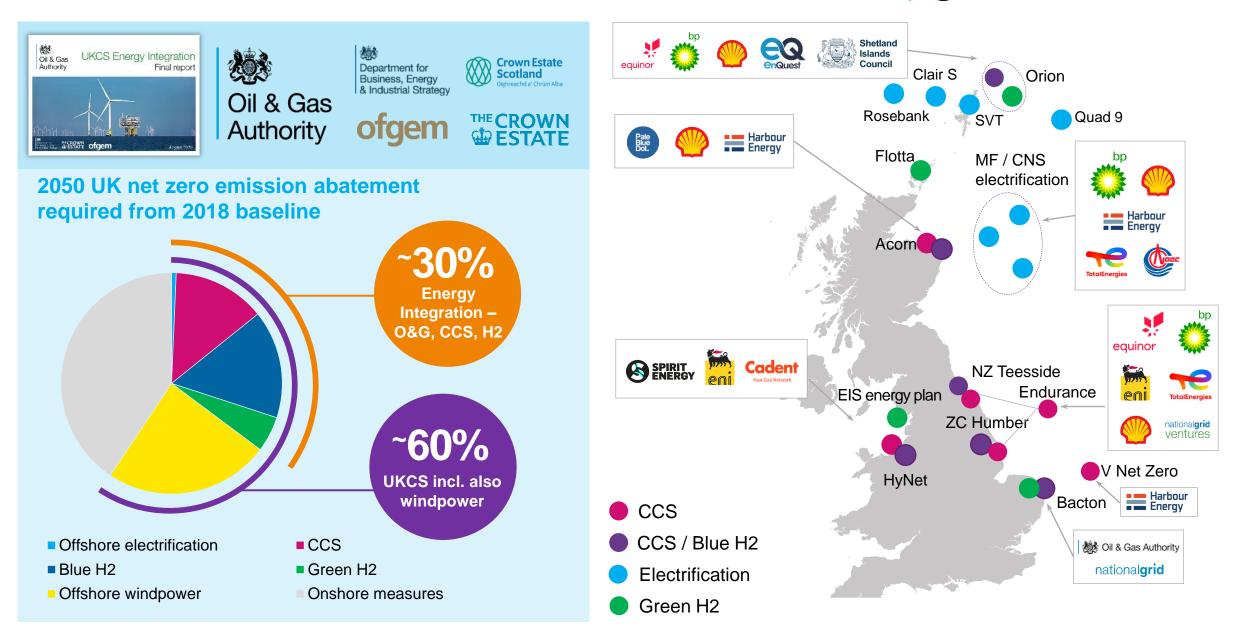

- Incl. TLP, SPAR, Semi-Subs, barge
- Substructures and mooring design
- No single or dominant solution (yet)

Cost pressures: from £175/MWh in 2020 to £50/MWh (near fixed wind parity) by 2030

Other technology gaps

- Dynamic cables for floating wind structure and FPSO connection
- Simpler, lower cost swivel changeouts/retrofits for voltage and power requirements
- Compact electrical equipment to fit available topsides space

NZTC / OREC planning studies and field pilots

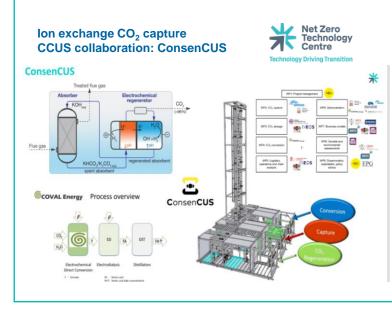


Integrated renewables (Source: FPP)

Longer term – 2030-2050 UKCS 'net zero' potential

🚵 Oil & Gas Authority

Technologies for CCS


CO₂ capture

Largest CCS cost component

Leverage O&G industry strengths in gas separation and processing:

- Solvent based absorption techniques
- Membrane separation

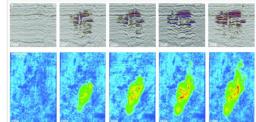
Bolt-on, small-scale CO_2 capture that could be deployed offshore

CO₂ transportation

New challenges

- CO₂ flow modelling and metering; impact of minor contaminants
- Phase control; colder temp. operation, energy addition
- CO_2 conditioning, H_2O removal
- Corrosion behaviour caused by CO₂
- O&G pipeline reuse resistant coatings and materials
 - New-build only no current tech for retrofit
- Integrity monitoring and predictive maintenance to detect and prevent crack propagation
- Pipeline internal coating (for CO_2 and H_2)

Regional CO₂ infrastructure



CO₂ storage

New subsurface applications

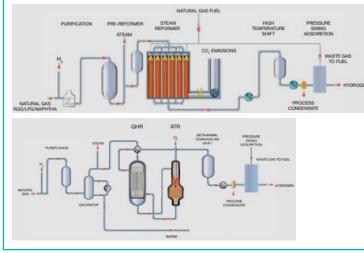
- CO2 migration monitoring
- Detection of leaks
- Wells technology for CO₂ operating conditions and corrosion
- CO2 resistant P&A of legacy wells

CO2 plume 4D seismic (Sleipner, Norway)

CO2 injector completions

Welltec[®]

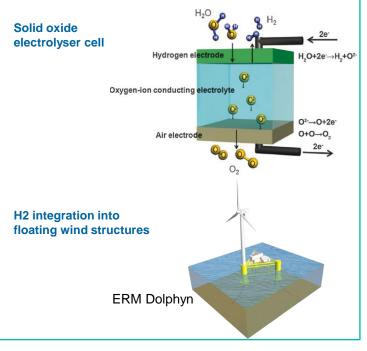
Geochemical water column sampling


Technologies for Hydrogen

Blue Hydrogen

- Methane reforming
- Blue hydrogen production essential to meet CCS and UK emission targets
- Existing technologies: SMR, ATR, POM
- Technology enhancements incl. hybrid processes: GHR, Dry Reformation and Sorption Enhanced Reformation
- New disruptive methods; methane pyrolysis (produces solid carbon instead of CO₂)

Steam methane reforming vs. hybrid process (ATR/GHR)



Green Hydrogen

Existing technologies based on AEM, PEM and SOEC (solid oxide electrolyser cell)

New disruptive methods

- Reversible SOEC/Fuel cell
- Direct seawater electrolysis
- Desalination improvements
- Electrolysis equipment marinization
- Equipment integration into floating wind structures

Hydrogen Infrastructure

Large hubs

storage

Bacton | Mile Gas Authority

Scale in production,

transportation and

Transportation / distribution

- Repurposing of hydrocarbon pipelines
- H₂ blending with natural gas
- Users fuel switching
- Compression, risers, metering
- Ammonia, LOHC and Liquid H₂

Storage

- Renewables intermittency strategy
- Existing pipelines line pack not feasible?
- Inter seasonal storage geological

The opportunity

- Develop the UKCS into a key 'net zero' energy asset for the UK
- Leverage existing O&G technologies, competencies and skills
 - O&G / Windpower synergies (esp. in *floating wind*)
 - Carbon Capture and Storage subsurface and facilities
 - Hydrogen production and transportation
- Continue technology development to address key gaps
 - Reduce Capex and Opex of 'net zero' energy projects
 - Scale up Wind, CCS and Hydrogen to meet net zero by 2050 ambitions

