DEVELOPMENT AND APPLICATION OF REX-CO2 TOOL FOR CCS WELL RE-USE ASSESSMENT

Kaj van der Valk, TNO

22 Feb. 2022, Utrecht (The Netherlands)

SPE Aberdeen – CCUS conference 2022

Kaj.vanderValk@tno.nl

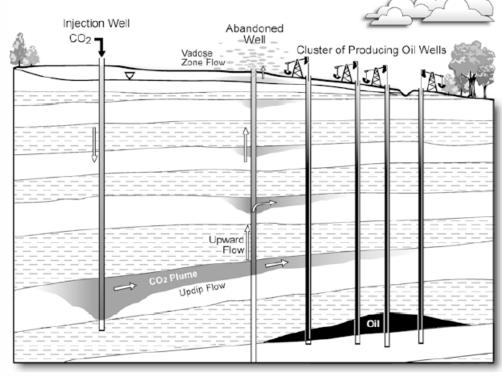
The project REX-CO2 is funded through the ACT programme (Accelerating CCS Technologies, Horizon2020 Project No. 299681). Financial contributions made from ADEME (FR); Ministry of Economic Affairs and Climate Policy (NL); Gassnova and RCN (NO); UEFISCDI (RO); BEIS, NERC, and EPSRC (UK); and US-DOE (USA) are gratefully acknowledged. The contents of this publication reflect only the author's view and do not necessarily reflect the opinion of the funding agencies.

Presentation outline

- 1. Introduction of the REX-CO₂ project
- 2. Development of the well screening tool
- 3. Application of the screening tool in case studies
- 4. Preliminary observations

REX-CO2 project planning and objective

- International research project, funded through the ACT (Accelerating CCS Technologies) programme (http://www.act-ccs.eu/)
- Duration: September 2019 August 2022
- Project website: https://rex-co2.eu/


Main objective:

provide decision makers with mechanisms and information to evaluate re-use potential of existing oil and gas wells for safe CO₂ storage

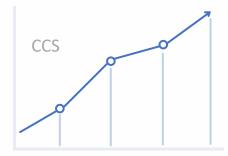
Motivation: safe CO₂ storage

Ref.: TexasMonthly, 2022 Jan 12

"The most important human activity in regard to leakage potential is well drilling" (Gasda, Bachu and Celia, 2004)

Motivation: need for CCS

CCS could play important role to reach climate goals

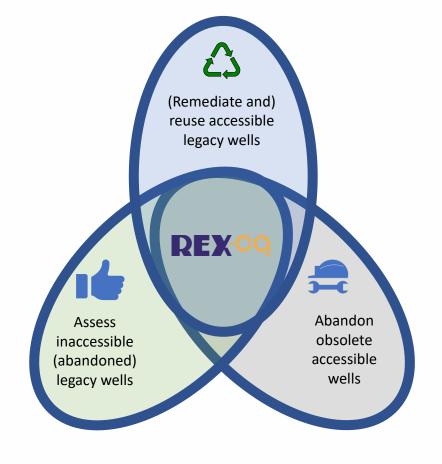

IEA Sustainable development scenario: CCS should grow from 40

Mtpa today to over 5,200 Mtpa by 2050 (IEA, 2020)

- Many HC fields approach end of life → planned for decomissioning
 - Potential future CCS sites
- Reusing existing infrastructure (incl. wells) option to upscale CCS and reduce CO₂ emissions

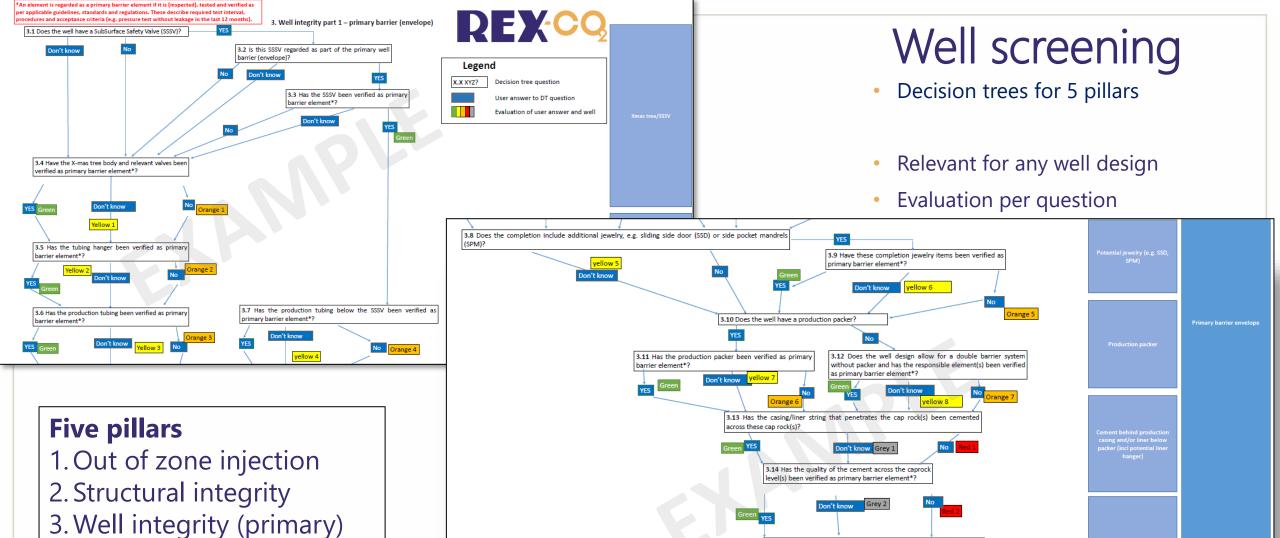
Challenge: All wells have to be assessed → time consuming and prone to inconsistency/incompleteness

A structured & independent well screening process is required



Ambition

Enable early project phase well screening

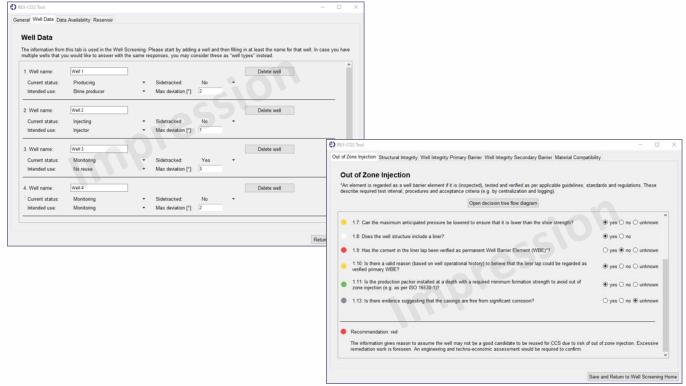

- Initial assessment CO₂ storage complex well integrity
- Aid decision making and CCS strategy development
 - Select reservoir and well candidates
- Allow optimised capacity planning
- Facilitate safe well re-use and CCS uptake

Based on reference projects, standards and guidelines

4. Well integrity (secondary)

5. Material compatibility

3.16 Have reservoir fluids been found when bleeding

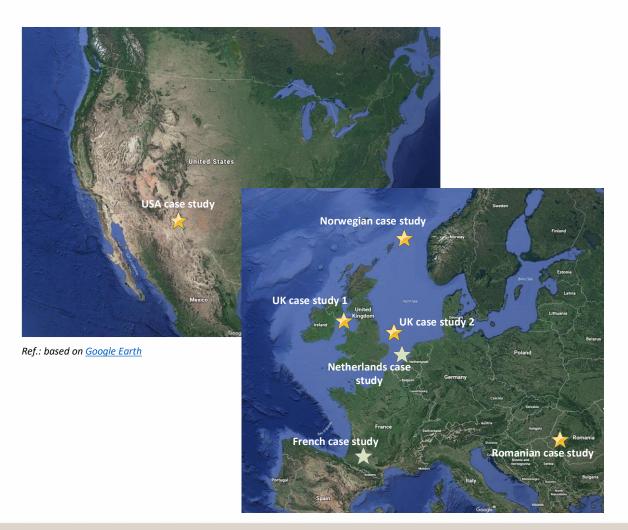

down the annulus pressure?

3.15 Does the well have sustained annulus pressures in any relevant

annuli or any other indication of cement integrity issues?

REX-CO2 tool impression

Well evaluation results


Results of well screening provided in the form of traffic light recommendations

Recommendation	Explanation
	Based on the screening no or only minor remediation could be expected for the well in its current state
	Based on the screening moderate remediation or additional verification efforts could be expected or a risk management strategy could be prepared for the well in its current state. One could think of remediations that do not require a workover rig, e.g. wireline or coiled tubing interventions
	Based on the screening severe remediation or a comprehensive risk management strategy on retrievable/replaceable items could be expected. One could think of remediation work that requires a rig or workover unit, e.g. to recomplete the well or abandon obsolete sidetracks
	Based on the screening severe remediation or a comprehensive risk management strategy on non retrievable/replaceable items could be expected. One could think of remediation work on annular cement or cemented casings; e.g. cement repairs or other technically challenging operations
	Critical information is missing for the tool. It is advised to look for additional data, acquire additional data (e.g. by running logs) or look for offset data and then revisit the tool

Application: national well re-use case studies

- Location: on- and offshore
- Applications: CCS and CO₂ EOR
- Depths: 1400-5000 m
- Reservoir rock: sandstone and carbonate
- Reservoir type: gas field, oil field, saline aquifer
- Reservoir capacity: 37 280 Mt CO₂
- Number of available wells >100

Porthos – P18-2

Downhole conditions:

- Initial pressure 375 bars
- Current pressure: 20 bars

Storage capacity:

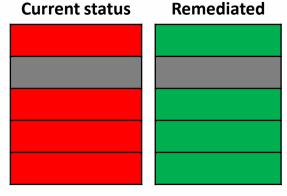
- 32 Mt of CO₂ @ 351 bars
- 32.2 Mt of CO₂ @ 375 bars

6 well legs penetrate caprock, 4 intended for reuse

Expert evaluation:

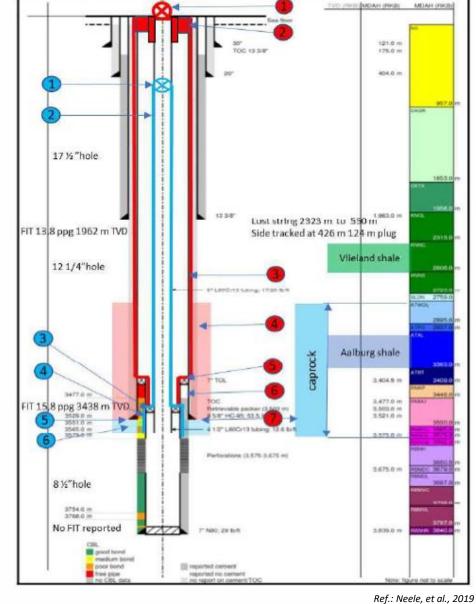
All wells intended for reuse have potential to be used as CO₂ injectors safely if identified risks are properly mitigated

Ref.: based on Google Maps



Porthos example well screening

Category


Out of zone injection Structural integrity Well integrity primary barrier Well integrity secondary barrier Material compatibility

Observations

- Main issue with liner cement
- Materials not compatible for new application

✓ Porthos evaluation is in line with expert assessment

Preliminary observations (based on NL, UK and US case studies)

- Results in line with expert assessments in validation cases
- Systematic approach to screen wells consistently (<1 hour)
- Highly dependent on data availability and quality
 - Strong recommendation: gather new data
- User friendly tool
- Traffic light results helpful for users

	Out of zone injection	Structural integrity	Well integrity primary barrier	Well integrity secondary barrier	Material compatibility
P18-02-A-01					
P18-02-A-03ST2					
P18-02-A05ST1					
P18-2A6					
P18-2A6-ST					

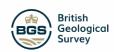
	Out of zone injection	Structural integrity	Well integrity primary barrier	Well integrity secondary barrier	Material compatibility
P18-02-A-01 (W)					
P18-02-A-03ST2 (W)					
P18-02-A05ST1 (W)					
P18-2A6 (W)					

Project consortium

No.	Organisation	Country	Type of organisation
1	TNO (coordinator)	Netherlands	R&D
2	BGS	UK	R&D
3	ВР	UK	Industry, O&G operator
4	Chevron	USA	Industry, O&G operator
5	CO ₂ Club	Romania	NGO
6	EBN (stakeholder role)	Netherlands	Industry, O&G operator
7	Equinor AS	Norway	Industry, O&G operator
8	GeoEcoMar	Romania	R&D
9	IFPEN	France	R&D
10	IKON	UK	Industry, SME
11	IRO (stakeholder role)	Netherlands	Branch Organization of O&G service companies
12	LANL	USA	R&D
13	NAMR (stakeholder role)	Romania	National Authority for CO2 geological storage
14	NEPTUNE Energy	Netherlands	Industry, O&G operator
15	Oil & Gas Authority-OGA (stakeholder role)	UK	National Authority for CO2 geological storage
16	ReStone AS	Norway	Industry, SME
17	SINTEF	Norway	R&D
18	Wintershall Dea	GER / NL	Industry, O&G operator
19	Vallourec Tubes	France	Industry, tubular manufacturer

References

- Gasda, S.E., Bachu, S. & Celia, M.A., 2004; Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Env Geol 46, 707–720 https://doi.org/10.1007/s00254-004-1073-5dsa
- TexasMonthly, 2022; A Forgotten Oil Well Births a 100-Foot Geyser in West Texas (by Russell Gold) (link)
- IEA, 2020, Energy Technology Perspective; Special Report on Carbon Capture Utilisation and Storage
- Google Earth (link)
- Google Maps (link)
- Neele, F., et al., 2019; CO2 storage feasibility in the P18-2 depleted gas field (TNO 2019 R11635)



Thank you for your attention

The project REX-CO2 is funded through the ACT programme (Accelerating CCS Technologies, Horizon2020 Project No. 299681). Financial contributions made from ADEME (FR); Ministry of Economic Affairs and Climate Policy (NL); Gassnova and RCN (NO); UEFISCDI (RO); BEIS, NERC, and EPSRC (UK); and US-DOE (USA) are gratefully acknowledged. The contents of this publication reflect only the author's view and do not necessarily reflect the opinion of the funding agencies.