

Research Centre

Application of novel downhole video technology leads to the diagnosis and successful remediation of injectivity performance issues in deep saline CO2 storage well

SaskPower Powering our future®

22 FEBRUARY 2022

A Q U I S T O R E_®

INTRODUCTION

About Aquistore

- Injection and storage of CO₂ from Boundary Dam coal fired power station, Estevan, Saskatchewan
- Facility owned by SaskPower and Operated by the Petroleum Technology Research Centre (PTRC)
- **Construction commenced in 2012** with initial injection in April 2015 and full scale injection by end of 2015
- Two wells drilled: Injection well and offset monitoring well
- CO₂ injection well designed to take up to 2,400 tonnes/day
- Over 393,000 tonnes of CO₂ injected to date
- A field lab for testing MMV technologies for future CCS projects

INJECTIVITY PERFORMANCE

Reservoir

- CO₂ is injected and stored in a highly saline formation (>30% salt) circa 3,400m below surface
- Four perforated intervals: Black Island, Deadwood B, C, D

Injectivity issues and impact

- Early injectivity rates stabilized at 400 to 600 tonnes/day
- High-rate CO₂ and Water injection tests performed
- Release of excess CO₂ that cannot be captured (or used for EOR)
- Carbon emissions tax CAD\$40 per tonne with impact of >CAD\$20,000 per day due to reduced performance

INJECTIVITY DIAGNOSTICS

Preliminary diagnostics

- Fluid diversion treatment performed in March 2015 with wireline conveyed pre/post injection logs
- Total of 410 ball seal spheres pumped to divert flow towards under-performing zones

Results

- Logs revealed partial success as inflow increased into Deadwood, but no improvement in Black Island
- Overall injectivity was slightly improved but remains far below the initial well test data
- Remedial actions considered to improve injectivity, such as re-perforation, acid treatment, or other stimulation
- Video survey commissioned to understand cause and identify which remediation would be most effective

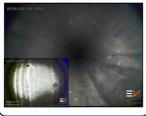
VIDEO DIAGNOSTICS

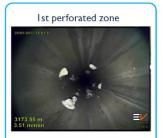
Video Survey

- First video survey recorded in May 2017 with time-lapse survey performed in August 2020
- Objectives to examine the perforated interval and identify factors affecting injectivity performance

Results

- Images revealed solids build-up in perforation tunnels and at perforation entry hole
- Solids identified in each of the perforated intervals with varying degree of severity
- Variety of features and characteristics of the observed solids suggest multiple mechanisms at work
- The solids were quickly diagnosed as salt precipitation with crystalline and highly porous appearance

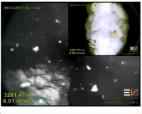

PESAGB


No Visible Deposit

Perforated zone

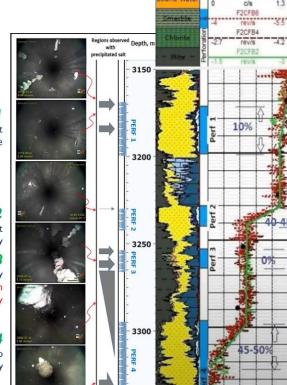
Minor Salt

2nd perforated zone



Formation	Interval (mKB)
Black Island	3173-3200
Deadwood	3230-3242
Deadwood	3255-3266
Deadwood/Precambrian	3296-3366

Significant Salt


Below 3rd perforated zone

Perf Zone I Highest permeability at the bottom of the zone

Perf Zone 2 High, relatively constant permeability Perf Zone 3 Low permeability Plugged based on spinner survey

Perf Zone 4 Variable, low to ntermediate permeability

Quartz

ound Wate

Stations 23000 lbs/hr •

c/s

TYPE 1

ZONE 1 (BLACK ISLAND)

Localised precipitation at perforations Limited impact on wellbore ID Some travel along wellbore (50cm) TYPE 2

ZONE 3 (DEADWOOD C)

Widespread precipitation Significant impact on wellbore ID Extensive travel along wellbore (50m) **TYPE 3**

WELL BOTTOM

Widespread precipitation Minimal impact on wellbore ID Limited to gas/liquid interface

PESAGB

CCUS Conference 2022

7

RESTORATIVE ACTIONS

Information and actions

- Creation of highly saline Ca-Mg-Cl brines through repeated drying/wetting cycles in operation
- Type 1 structures at perforations with localised low porosity and permeability, resulting in loss of injectivity
- Type 2 structures at **perforations within overall low permeability zones**, causing loss of injectivity to zone below
- Simple warm water wash would remove salt build-up, but risk of unintended consequences from change in chemistry
- Focus shifted from intervention to management

Further studies

- Core flooding, permeability analysis, microCT imaging and reactive transport studies performed
- Understand mechanism and ways to limit flow-back

NOVEL VIDEO TECHNOLOGY

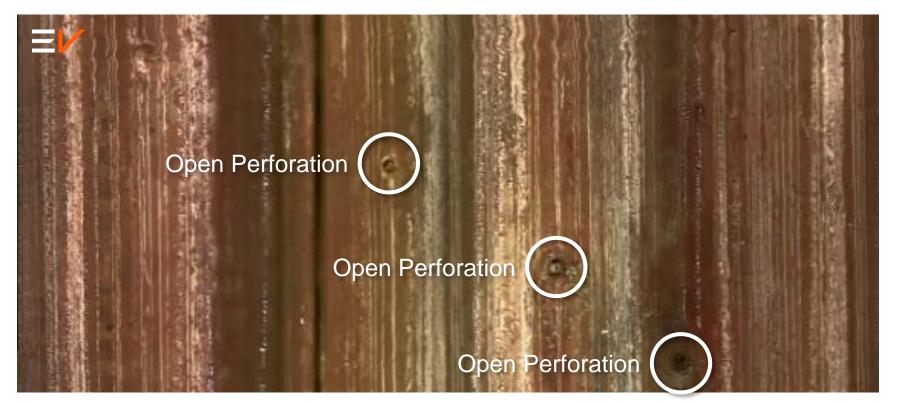
The world's first array sideview camera for downhole applications:

- 360-degree continuous side-view camera footage
- Integrated down-view camera
- 25 fps sample rate
- Real-time or memory configuration
- All conveyance types: slickline, e-line, coiled tubing, e-coil and e-line tractor
- 2880 x ᅇ pixel video resolution
- >5 GigaPixels processed per 30ft (at 15 ft/min)

Side-view results

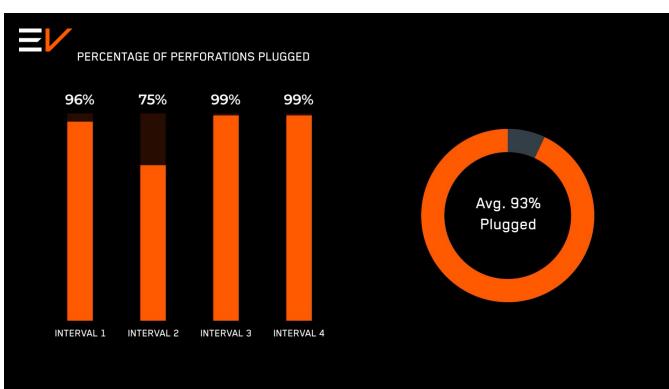
- Revealed more detailed images of solids structure
- Granular / porous texture confirmed at all zones
- 360° field of view allowed detailed imaging of every perforations in each zone

Key observations


- No "Type 2" structures: Deadwood C wellbore clean
- Type 1 structures evident in all perforated zones
- Degree of precipitation variable across each zone

CCUS Conference 2022

PESAGB



QUANTITATIVE EVALUATION

Results

- Each perforation analysed for presence of solids
- Statistical database created for each perforation and zone
- Up to 99% of perforations in some zones affected
- Average of 93% of perforations affected by solids

OUTCOME & LESSONS LEARNED

Remedial action

- Analysis of salt samples suggested ability to break down salt deposits with further injection
- Surface data and downhole video analysis supports this self-healing proposition as injectivity increasing
- Plan regular video surveys for time-lapse monitoring

Preventative action

- Simulations reveal backflow and precipitation severely reduced by maintaining continuous injection
- Processes changed to limit shut-in periods and establish minimum operating injection rates

Recommendations

- Ensure consideration given to onset of scale development during planning phase
- Consideration to be made for conditions that may result in flow-back of water into injection well
- Prevent prolonged shut-in periods and maintain high volume of injection

Research Centre

Thank you

Find out more evcam.com

