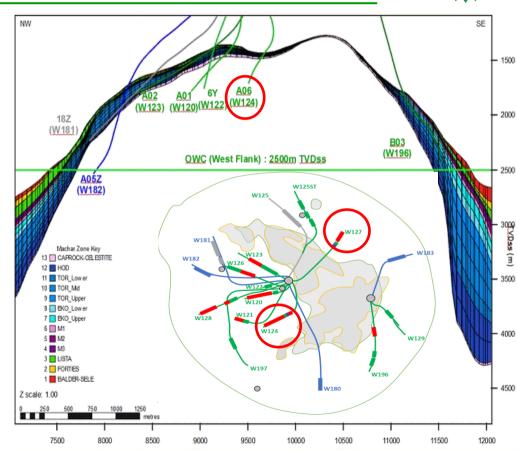
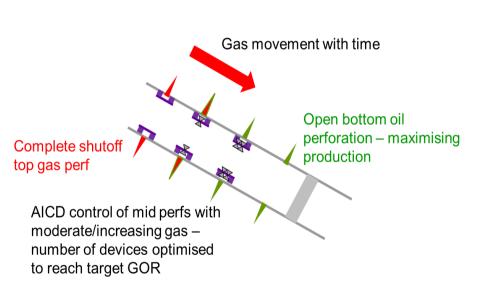


Using Autonomous ICDs to Maximize Oil Recovery from the North Sea Machar Field


Devex May 2022: Greg Stewart, James Hoad (bp) & Anna Petitt (Tendeka)

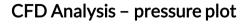
Machar field summary

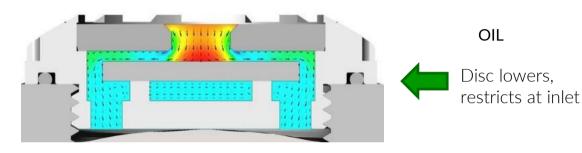

bp

- Producing under waterflood since 1998, tied back to ETAP CPF in the Central North Sea using 35km pipeline
- Steeply dipping, fractured Cretaceous chalk and Palaeocene sandstones draped over a high relief salt diapir
- Water injection stopped February 2018 to begin blowdown
- First blowdown of fractured chalk reservoir following waterflood within bp
- Focussing initially on oil recovery followed by gas production
- No direct global analogues
- With pressure depletion, gas is coming down-dip
- Two wells with AICD retrofits: W124 and W127

Machar W124 & W127 Summary

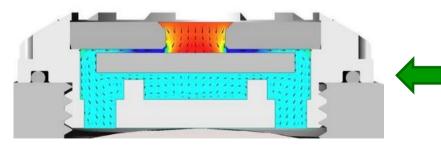
- W124 first intervention for managing Machar blowdown
- W124 key crestal well early drop in watercut but rapid gas increase – unmanageable within pipeline constraints
- August 2020 successfully set AICD straddles with gas control matching predicted performance
- W127 subsequent 2021 application with further success in GSO
- New technology for a UK North Sea subsea intervention – AICDs

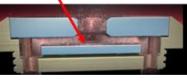




Principle: Autonomous ICD levitating disk

TENDEKA RESULTS ACROSS YOUR RESERVOIR

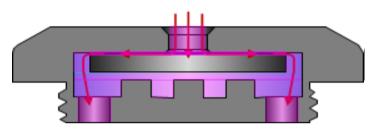




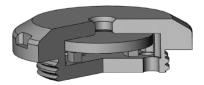
Floating disc determines production choke effect – responds to density and viscosity contrast

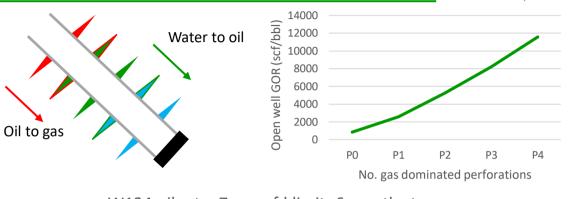
Disc levitates, restricts between disc

GAS



- More than 210 wells with Tendeka FloSure AICD
- More than 35,000 AICD valves installed
- 27 operators across the globe

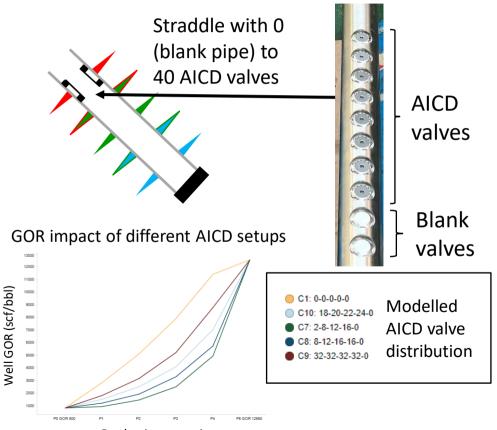



Three forces are acting on the disc

- \downarrow F_{mom} = Force due to momentum $\downarrow \downarrow$
- **†** F_{lift} = Force due to hydraulic lift **†**
- ↓ F_{drag} = Force due to viscous drag

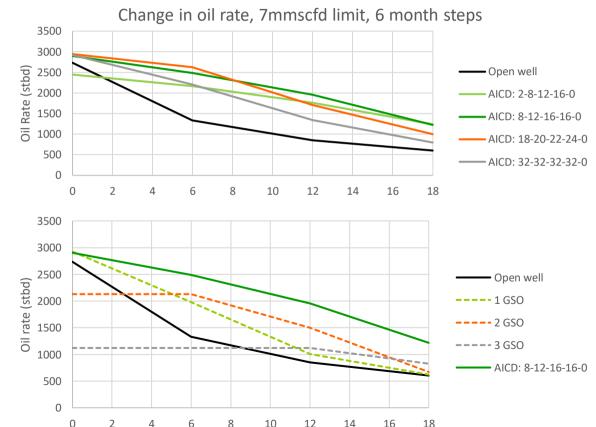
Intervention planning – W124 gas control challenge

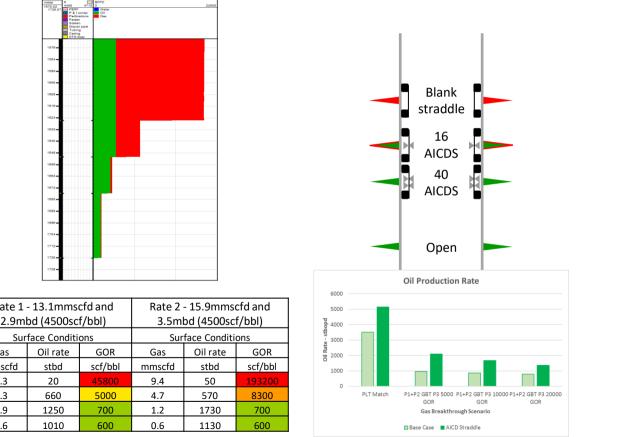
- W124: increasing GOR but declining watercut
- Subsea pipeline stability gas constraint – unable to open up well to full oil potential
- Significant uncertainty in rate of gas progression – is there a single intervention solution robust to all scenarios without shutting off oil?


W124 oil rate, 7mmscfd limit, 6 month steps

AICD modelling process

- Initial collaboration with Tendeka to test concept
 - Potential AICD setups
 - Test against future increasing GOR scenarios
 - Value case for AICDs
- Developed internal simplified well/AICD model for rapid scenario testing and support live optimisation
 - Multi-layer well model
 - Match well performance to a range of perforation production scenarios
 - AICD equation implemented vary no. valves per perforation


Production scenario


Pre-intervention AICD model results and value

- Comparison of shutoff and AICD setups against range of future well performance
- Test flexibility of intervention against different scenarios
- Define potential no. AICD valves required for straddle design and planning
- Ensure well productivity not overly constrained: value from being able to increase well drawdown

W124 AICD setup optimisation

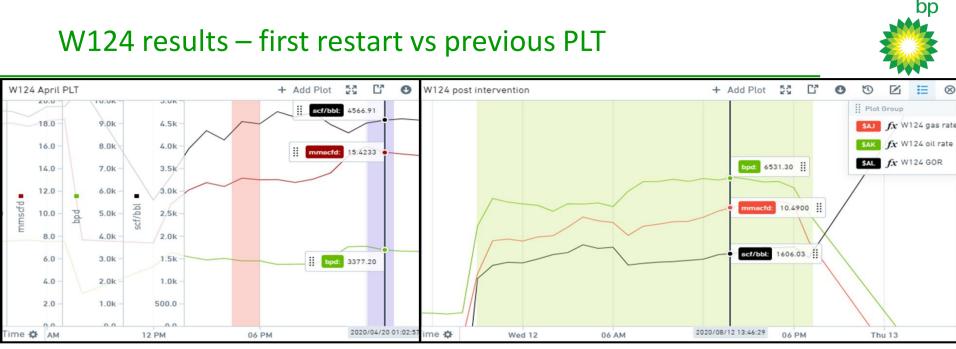
zones/AICD numbers testing future gas progression

Optimise shutoff

Production log data perforation match

Check total production vs.

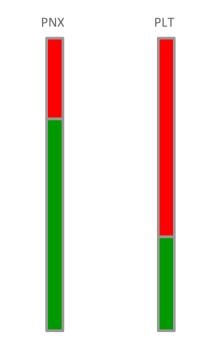
latest steady state well test


data

Run optimal scenarios with Tendeka AICD model

Adjust AICD setup offshore and deploy in straddles

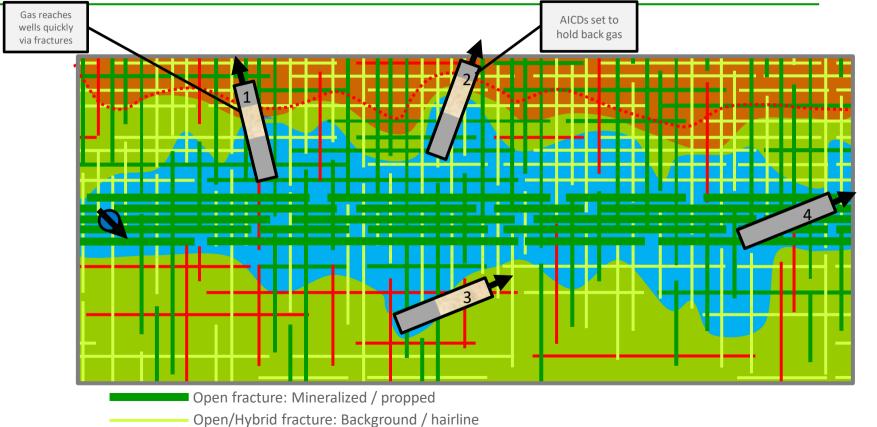
	Rate 1 - 13.1mmscfd and			Rate 2 - 15.9mmscfd and		
	2.9mbd (4500scf/bbl)			3.5mbd (4500scf/bbl)		
	Surface Conditions			Surface Conditions		
Perf No.	Gas	Oil rate	GOR	Gas	Oil rate	GOR
	mmscfd	stbd	scf/bbl	mmscfd	stbd	scf/bbl
1	8.3	20	45800	9.4	50	193200
2	3.3	660	5000	4.7	570	8300
3	0.9	1250	700	1.2	1730	700
4	0.6	1010	600	0.6	1130	600



- Similar standalone max. rate tests W124 shut-in before intervention
- Immediate benefit to Machar: ~3mbd
- Gas control matched model results: ~1600scf/bbl
- A reduction in gas-oil ratio of 60% keeps the field within facility production constraints and retains reservoir energy for oil production.

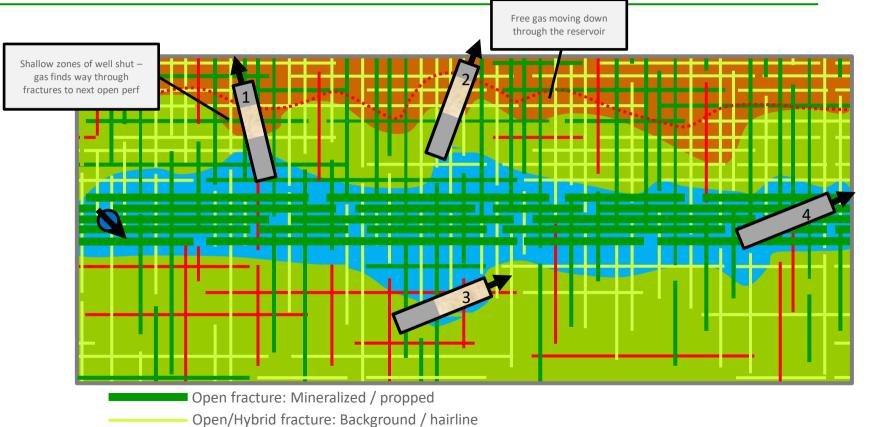
W127 Results and Surveillance Insights

- Completed 2021
- Working DHG simplified the modelling
- Gas shut-off with 1 straddle using 8 AICDs across top perforation in well other two perfs left open
- Immediate field rate benefit of approx. 1.6mboed declining to 0.5mboed after 12months
- Blowdown so far:
 - Fracture network dominating behaviour rapid well performance changes
 - Recent saturation log data supporting understanding gas production from perforations below matrix GOC, oil production from perforations with high matrix Sw


Fluid contact in W127 interpreted from downhole surveillance

Conceptual model – Blowdown (now)

Closed / cemented fracture



d e p t h

Conceptual model – Blowdown (+5yrs)

Closed / cemented fracture

bp

d e p t h Operational challenge – "even better if"

- Differential pressure across AICDs limited to 600psi
- Potential for reduced gas control at higher differential pressures
- Influences initial AICD setup and number required per zone
- W124 challenge due to loss of downhole gauge more conservative operational limits required
- A downhole gauge or a robust well model can be used in higher drawdown environments to give confidence of sustainable production with AICDs and increase operating window

- AICDs have resulted in one intervention per well as opposed to a phased intervention strategy within subsea wells to reduce GOR and manage gas offtake
- 2020 application the first retrofit AICD installation in the UK North Sea
- Upfront and real-time modelling alongside production logs optimised the number of AICDs set
- Operating AICDs within their limits results in sustainable production gains
- Machar blowdown prize is underpinned by this technology and supports the strategy enabling maximum economic recovery of the field

Questions?

