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To Summarise

•

• 3C beamforming can estimate seismic anisotropy.

• Clear fast directions from seismic anisotropy indicate subsurface structures.

• Zone 1 and 2 dominant anisotropy match fast directions.

• Maxtaloya-Los Humeros fault swarm (zone 1) and Arroyo Grande fault/parallel faults (zone) are,  

therefore, seen at depths > 2 km.

NE-SW trending Mafic dykes may also have caused an anisotropy response (such as 3.5 km in  

Fig.6a).

Implications for the Geothermal Field:

• Continuation of faults at depth 

• Anisotropy might be sensitive to hydrothermal productivity

• No evidence for brittle-ductile transition zone at depths < 6 km. 
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