Extending Low-Frequencies with a new seismic air source design

Susanne Rentsch-Smith, Ed Hager

Drivers for Low Frequencies – Extending Broadband

• LOW FREQUENCIES:

Broader amplitude spectrum

- More octaves the better
- Lows reduce the side-lobes of the wavelet
- Smaller side-lobes improve the resolution

-0.5 -200 -150 -100 -50 0 50 100 150 200 Time (ms)

Seismic Inversion

- Inversion requires a flat spectrum from OHz
- Better lows improve the reliability of the inversion, less reliance on low-frequency models

Full-waveform Inversion

• Starting frequency can have a significant effect on the final result

Basic source design

- Amplitude is linearly proportional to the number of guns
- Amplitude is linearly proportional to the firing pressure
- Amplitude is proportional to the cube root of the volume
- Frequency output of an airgun is proportional to its volume

- More guns are better than big guns
- Big guns have better low frequency output
 - If two guns are near enough to each other, their bubbles coalesce
 - Output frequency is the same as if it was a single gun of the combined volume
 - Power output is up ~60% over a single gun

Classical airgun arrays

- We want to tune out the bubble effect –sharp spike
 - Bubbles oscillate with different frequency.
 - Bubble frequencies chosen for maximum destructive interference.
 - Gun distances chosen to ensure that the bubbles oscillate independently.

Fundamental frequency vs. Gun/Bubble volume

Ways to **change** the low frequency output

Increase Total Volume

More of the same

Limited by compressor capacity

Lifts entire spectrum

Depth Changes

 Bubble frequency varies as cube-root of effective volume
-tow deep and the hydrostatic pressure increases=small

bubble=less lows

..but better zero notch

-tow shallow, bigger bubble

...but operational constraints

Increase Bubble Size

Bubble frequency varies as cuberoot of effective volume.

Larger guns – reliability trade off

Clustering – limited # of

guns in a cluster

Frequency locking¹

¹Laws, Hatton and Haartsen, 1990

Bubble Interaction Changes the Oscillation Frequency

¹Laws, Hatton and Haartsen, 1990

Atlantic Deep Water Test

- Endurance testing
- Full source deployment

Test objectives

Reliability testing

Refill times

Different cluster configurations

Normal source QC over time

Test for frequency locking

Bubble Period estimates NFH2 only (peak to peak pick) 06/07/2021

SP #

Partial Frequency Locking Increments on Raw NFH Bubble Period

© Shearwater GeoServices - All Rights Reserved

Johan Sverdrop Test

- Endurance testing
- Full source deployment

Johan Sverdrop Test configuration

Co-located sources, 25m flip-flip acquisition

© Shearwater GeoServices - All Rights Reserved

Data courtesy Equinor

Harmony Spectra

Farfield signatures computed from nearfield hydrophones

~uplift approx. 10dB @4Hz

Spectra from common shots, permanent reservoir monitoring nodes

Reference high-output source 5085cuin, 3 sub-arrays, 24 elements

Harmony Flexible by Design

• Design

- Uses equipment suitable for fleet-wide deployment
- Harmony occupies a single sub-array position (+hot spare if required)
- Field tested for endurance and reliability

Standalone broadband source

OR

Incorporate with standard sources

Summary

• Low-frequency rich source

- Enabled by frequency locking
- One sub-array design –flexible options

