The opportunities in Artificial Lifts and The technological advancements

By Atika Al-Bimani

ESP-Subject Matter Expert Independent Consultant

AL Technology is an ancient piece of engineering

AL Type	Year Invented	
Rod Pumping	1859	The oldest
Gas Lift	1864	
ESP	1927	
РСР	1984	(1990's applied in Oil wells)

... yet there are **seas of challenges** in our day-to-day operations, and subsequent there are **seas of opportunities** in addressing these challenges through **technological advancements**

Why we want New Technologies, our expectations from New Technology

Increase Efficiency: such as

- Efficiency gains through optimal motor and pump designs
- Reduce friction & recirculation (Gas lift)
- Reduce Fatigue due to moving parts (rods & pistons)
- Increase Reliability: such as
 - Reliability gains through superior design and material selection
 - > Hybrids technology (such as ESPCP, replace a weak component to fit the application.
- Reduce the costs
 - Rigless ESP deployment and retrieval technologies.
 - Reduce the overall lifting costs in artificially lifted wells
 - Improve design & material
 - Improve process / workflows, adopting Lean sigma
- Improve Operating range: decline production rate due to natural Pr depletion, unconventional
- Easy of Operating: save time for other add value activities, need of less skilled workers

New Technology should provide solution to our challenges

AL Industry - focus areas to be addressed, to name few

- Handle difficult fluid: gas, temp, pressure, sands/solids, scales, viscosity, corrosivity(H2S,CO2,O2)
 - Gas: Industry has many type of Gas Separators, but we still have gas goes through the pump.
 - Gas separator designs
 - Geometry of pump stages
 - Control systems to handle gas better (fully automation needed)
 - Sand & scales
 - Check valves, diverters systems, bypass systems
 - ➤ Scales
 - Assess type of scales for right chemical treatment,
 - Corrosive & abrasive fluids
 - Advanced AL Metallurgy: (Equipment material improvement), e.g
 - \circ Corrosion resistance > Ni resistance
 - Wear resistance > Powder metal
- Addressing well construction type : deviation, lateral lengths/shapes/depths, sizes
 - > Achieving a fully functional well
- Addressing reservoir condition prior to the fluid reach the AL : gas, viscosity, sand, drilling debris
- Rapid changes of Flow conditions (especially in unconventional fields)
- Power quality : harmonics, currents / voltage transients, surges, etc

AL Industry - focus areas to be addressed, to name few

Need more Automation, through the life cycle of the AL

Real time automation

Intelligent Control Systems	data acquisition; surface, downhole (drones, advanced gauges)
performance analysis	Pattern Recognition (Exception Based surveillance, diagnosis)
Remote Access & Control	Trouble shooting (failures / issues are repeating, exist huge data set

Designs, equipment selection, installation: on going software initiatives. Need maturation & commercialization
 Failure analysis, feedback improvement loop: need consolidation & add automation in some process/software

AI & ML : Easy of Surveillance / Diagnosis / Physics based % data driven Failure prediction Automatic anomaly detection & failure prediction on real time surveillance (EBS)

Increasing Operating ranges in AL equipment :

Natural reservoir pressure depletion, challenges on pressure maintenance reservoirs
 Unconventional wells

AL deployment methods

- Rigless : Deployment & retrieval technologies. The uptake to the operators is still low!
 - reducing workover costs and deferred production
- Improve Conventional AL deployment (Rig / WO Hoist)
 - Inject advanced Automation, such as robotic & drones technology. How about we follow car industry model?

How can we collectively establish/initiate Technology Advancements? We should continue to :

- Participate in Joint Industry Projects (JIPs), Consortiums & Universities / Institutes Research Centers
 - Participate in advancing research in key areas of Artificial Lift technologies, such as EOR, HTHP fields, Difficult fluids, Digital field, etc
 - > Participate in cutting edge research driven by industrial needs. Such as :
 - Energy transition in AL
- Be active in worldwide Engineering Networks, such as:
 - Seminar for New Artificial Lift Technology attended by oil & gas companies together with vendors to discuss their latest developments
- Conduct Internal Workshops/Conferences within the Company.
 - Invite service companies (Vendors)
- Be Involved in External Workshops/SPE. (We are here at EuALF!)

Most needed industrial technology advancements can be easily be born in these platforms

AL Challenges – Pushing the limits, to name few

- Pushing the limits of artificial lift technology
 - deeper reservoirs: 3,000 to 4,000 m and beyond.
 - Once they were free-flow, then water cut increase
 - Long laterals
 - AL expected to efficiently drain oil across 4 km length of the lateral hole.
 - Complicates pump setting at horizontal especially at the presence of gas!
 - Slimmer well completions
 - Cost effective initiative from Well Engineers folks!
 - Scab lining well due to corrosion / erosion, increase well life
 - Data acquisition in these wells
- PMM technology
 - Eliminates induction losses
 - Improved Operational Efficiency
 - Reduced Energy Consumption
 - Some companies adopt PMM for this reason, to achieve their NetZero targets
 - Better Performance
 - Multipurpose: PMM-ESP & PMM-PCP (ES-PCP)
 - Enablers in extreme design / well condition well :
 - slim wells (4 1/2" mono-bore casing wells)
 - Gassy wells

Success criteria in launching a new technology; best practice

- Implementation
 - The customer must be able to implement it.
 - > Need to dedicate a multidisciplinary team to ensure smooth implementation.
 - Need a project management tools to see the implementation through to the end and track milestones along the way.
 - > A dedicated New Technology Department with own assigned budget is essential.
- Process :
 - Technology should aim to reduce the number of steps in addressing the challenge.
 - Technology to increase convenience for the customer. Make our lives easier!
 - More opportunities in softwares. Example: Subsurface & surface well modelling; Its about time to have "press a button" well models plots generation
- Customization:
 - > Ensure a balance of customization / add on. Avoid losing focus of the original purpose of new technology project
- Expectations
 - > Develop a set of KPIs to assess the performance of new technology projects. Examples:
 - Deployment Readiness: Time between trial completion and commercial contract. This is the most critical KPI as it determines how fast a Company benefiting from a successful technology
- Management support / sponsor / frequent engagement
- New Technology champion, some one with the passion. A kind of sell person within the Company!

Struggling implementing New Technologies? Are these sounds familiar?

- Lack of Management support / a sponsor. Budget??
- Fear of failing & shy away: monster with no safety standards / is it even workable!!
 Example: Dual ESP completion across separate reservoirs with down hole gauges. Turn out to be feasible with a proper procedures.
- Lack of alignment : technologies innovators / service companies sponsor / operators
- Lack of confidence : the benefits, values, lack of sound proposition
 Need an intelligent / smart sell man/woman to pitch the idea to the organization
- Need people with natural passion : Need champions, not just a position in the hierarchy

> The late Steve Job had passion!

- Nature of contract model: This on equipment Improvements / re-engineering, often considered to be part of running contract, avoid extra cost.
 No appetite to attract the vendors to focus on technology advancement
- Continuous changes of user needs, till lost focus of the original idea

Artificial Lift technology is an ancient technology, yet there are **seas of challenges** in our day-to-day operations, and subsequent there are **seas of opportunities** in addressing these challenges through **technological advancements**

THANK YOU