

Advanced Gas and Solid Handling Pump for Unconventional Gassy and Sandy Well Challenges

ACE PLUS™ Gas Handler

Lyon Hong and Vishal Gahlot

Copyright 2020 Baker Hughes Company. All rights reserved. The information contained in this document is company confidential and proprietary property of Baker Hughes and its affiliates. It is to be used only for the benefit of Baker Hughes and may not be distributed, transmitted, reproduced, altered, or used for any purpose without the express written consent of Baker Hughes. 81781

Table of Content

Project Background

Gas Management Technology

• ACE PLUSTM Gas Handler

Stage Coating Technology

Armor[™] Protective Coating

Case Studies

Q&A

2

Project Background

Problem Statement and Objectives

- For unconventional wells, the high gas volume fraction (GVF) and solid abrasives in the production fluid become challenges because the wear in pump stages from the abrasives and the gas locking of pumps cause unwanted interruptions to productions and reduction of the pump life dramatically.
- Develop an advanced multiphase helico-axial and abrasion resistant pump to meet the increasingly difficult conditions found in unconventional gassy and sandy well environments and the technology allows operators to reliably process up to 75% free gas without gas locking at extremely low intake pressure conditions and ride through gas slugging smoothly and significantly enhance the pump life.

Gas Management

ACE PLUS™ Gas Handling Pump

Gas Handlers are used in extremely gassy wells or in wells that cannot be vented to annulus

- Radial stages can handle +/-10%
- Mixed flow stages +/- 20%
- Helico-axial stages up to 75%

dund	dund	
s Handler	Gas Handler	Inlet Less Than 75% Free Gas
	parator	Inlet Less Than
	Gas Se	90% Free Gas

Multiphase Gas Handlers: Working Principle

Tools & Systematic Design...

Developed **physics-based** tools from 0D to 3D CFD to understand and design pump stages for best-inindustry performance and range

Geometry Definition

Detailed Design

- Geometry Manipulation
- Design parameter optimization

Detailed Verification

Multistage Performance

Design Validation

Deisign optimization and CFD best practice through rigorous verification and validation to guide new stages development

Gas Handler Design Tool

Gives a preliminary map of what is feasible within CTQ's

Semi-empirical model to predict occurence of gas-lock

HelicoAxial-Type 2500BPD

HelicoAxial-Type 2500BPD

GH2500 vs. Typical Gas Handler

400 Series GH2500

400 Series GH2500

GH2500 vs. Typical Gas Handler

AL Gas Handler delivers

- Increase in exit velocity
- Higher pressure generated
- Improved performance of
- Less ESP stages required

Performance Test

Performance Test (Gas Map - GVF Graph)

GH7000 on Flex80 Gas Map (Liquid+Gas)

Ace PLUS™ Gas Handling Pump

- Patented technology
- 400 and 538 Series Stages
- Handles 75% of free gas without gas locking at low intake pressures
- Compression design

Ace PLUS™ Gas Handling Pump Product Line				
Ace PLUS™ Model	Series	Outside Diameter	BEP (BPD)	Application Range (BPD)
GH 650	400	4″	650	300-1200
GH 1400	400	4″	1500	800-1800
GH 2500	400	4″	2650	1000-3200
GH 6000	400	4″	6300	3400-7600
GH 4000	538	5.38″	4500	1400-5400
GH 7000	538	5.38″	8000	3000-9600

Stage Coating

Abrasion Flow Loop Test Setup

Abrasion Test Review

Gas Separator Compression tube @ 25 hrs. Abrasive Loop Testing

Gas Handler Diffuser ID @ 30 hrs. Abrasive Loop Testing

- Concern about using a shroud-less impeller arose after severe abrasive wear damage was found in the field in our Gas Separators
- Wear observed in the Gas Handler Diffuser was minimal when compared against an untested diffuser approximately 0.020" (0.6%) of wear diametrically after 40 hours
- When compared to the wear seen in the Gas Separators, the wear in the Gas Handlers is insignificant

GH1400 Abrasion Test (Dimensional Changes)

GH1400 Abrasion Test (Performance Drop)

Microstructure of Coating

Diamond particles

- Much smaller diamond particles
- Many more particles
- Diamond particles 2
 microns
- No clumping of diamond particles
- Between 35v/o and 38v/o diamond particles

Nickel/Phosphorous

- Excellent Chemistry for Oil & Gas downhole environment (Abrasive & Corrosive)
- Extends pump life 5 times longer
- Application Temperature: Max 250°C
- Coating Hardness: Average 1400 1500 Hv
- Uniform thickness control (+/-0.0005 inches) with dense and consistent microstructure
- Excellent adhesion strength to substrate
- Smooth surface finish
- Entire stage coated

GH2500 Slurry Test

The wear shown blocked here was present on all impellers and comparing the pre-run coated image on the left you can also see a good amount of the upper vane had eroded away on leading edge and the lower helical vane's edge has been rounded over. You can also see the coating appears to be lost on the impeller.

GH2500 Slurry Test

Bottom view of impeller showing impact to leading edge of the 3 helical vanes. This wear was also present on all impellers.

GH2500 Slurry Test

Diffuser vane entry side, tip wear.

GH2500 Slurry Performance Test

GH2500 post slurry performance test overlaid with test from first article.

There was no performance drop even after the slurry test.

Case Studies

Gassy Well Shutdown Avoidance

Example: Continuously Cycling Well ------ Continuous Production

ESP Operational Trends before and after GH2500 Installation

